The space between the stars is not empty but filled with a very dilute gas with extremely low densities and temperatures, providing a unique laboratory with conditions not normally encountered on Earth. A surprisingly rich chemistry occurs in these so-called interstellar clouds, as evidenced by the discovery of more than 200 different molecules. Some of these species were found in space before they were identified in a laboratory on Earth. How are these molecules formed? Where are they found and how do astronomers identify them? How do their abundances differ from place to place and what does this tell us about the structure of the region? How do the abundances evolve from cold clouds to planet-forming disks, where they can form the basis for prebiotic species?
The outline of the course is as follows:
Basic principles of gas-phase and gas-grain chemical reactions
Chemistry in the early Universe
Chemistry in diffuse and translucent clouds, and in photon-dominated regions
Chemistry in shocks
Evolution of molecular abundances from dark pre-stellar cores to star-forming regions
Chemistry in protoplanetary disks and links with comets
Outcome:
The student will gain relevant background information that will enable him/her to follow the current literature on Astrochemistry and to do research in this field. The student will also acquire hands-on experience with running molecular excitation and chemical network codes, and make predictions for ALMA.